top of page


Woldemar Tikhonov
Woldemar Tikhonov

Windows 7 Ultimate 64 Bit Preactivated [TOP]

Then there is no hardware restriction for installing Windows 7 ISO. As compared to Windows 10, Win 7 performs better even in old systems. Lastly, there are no forced updates in Win 7. It asks for permission if the user is free then he can start Windows 7 update. But in Windows 10 each time when a new update is released. It forcefully starts windows update and sometimes takes time.

Windows 7 ultimate 64 bit preactivated

In case, you download Windows 7 All In One ISO file (64-bit or 32-bit) for the first time on a fresh PC. The rest of the installation process is very easy. You can save the Windows ISO file on your PC and follow the tutorial on How to install Windows 7 from USB Drive. The OS installation using windows 7 ISO is explained in a simple and easy way.

After that, download Windows 7 all in one ISO full version (32-bit or 64-bit) by clicking the links below. The Windows 7 all in one preactivated ISO is a complete offline installer and standalone setup. It is compatible with both 32-bit and 64-bit Windows PCs.

This post of MiniTool mainly talks about Windows 10 All In One ISO, including its included editions, key features, system requirements, and download links. If you are going to get Windows 10 All In One preactivated (x86/64) ISO, read the post now!

In this era of technology-driven global neuroscience initiatives, the role of the neurotechnology industry remains woefully ambiguous. Here, we explain why industry is essential to the success of these global initiatives, and how it can maximize the scientific impact of these efforts by (1) scaling and ultimately democratizing access to breakthrough neurotechnologies, and (2) commercializing technologies as part of integrated, end-to-end solutions that accelerate neuroscientific discovery. Copyright 2016 Elsevier Inc. All rights reserved.

Voice disorders are medical conditions that often result from vocal abuse/misuse which is referred to generically as vocal hyperfunction. Standard voice assessment approaches cannot accurately determine the actual nature, prevalence, and pathological impact of hyperfunctional vocal behaviors because such behaviors can vary greatly across the course of an individual's typical day and may not be clearly demonstrated during a brief clinical encounter. Thus, it would be clinically valuable to develop noninvasive ambulatory measures that can reliably differentiate vocal hyperfunction from normal patterns of vocal behavior. As an initial step toward this goal we used an accelerometer taped to the neck surface to provide a continuous, noninvasive acceleration signal designed to capture some aspects of vocal behavior related to vocal cord nodules, a common manifestation of vocal hyperfunction. We gathered data from 12 female adult patients diagnosed with vocal fold nodules and 12 control speakers matched for age and occupation. We derived features from weeklong neck-surface acceleration recordings by using distributions of sound pressure level and fundamental frequency over 5-min windows of the acceleration signal and normalized these features so that intersubject comparisons were meaningful. We then used supervised machine learning to show that the two groups exhibit distinct vocal behaviors that can be detected using the acceleration signal. We were able to correctly classify 22 of the 24 subjects, suggesting that in the future measures of the acceleration signal could be used to detect patients with the types of aberrant vocal behaviors that are associated with hyperfunctional voice disorders.

Solar Energetic Particles (SEPs) are a major branch of space weather. Often driven by Coronal Mass Ejections (CMEs), SEPs have a very high destructive potential, which includes but is not limited to disrupting communication systems on Earth, inflicting harmful and potentially fatal radiation doses to crew members onboard spacecraft and, in extreme cases, to people aboard high altitude flights. However, currently the research community lacks efficient tools to predict such hazardous SEP events. Such a tool would serve as the first step towards improving humanity's preparedness for SEP events and ultimately its ability to mitigate their effects. The main goal of the presented research is to develop a computational tool that provides the said capabilities and meets the community's demand. Our model has the forecasting capability and can be the basis for operational system that will provide live information on the current potential threats posed by SEPs based on observations of the Sun. The tool comprises several numerical models, which are designed to simulate different physical aspects of SEPs. The background conditions in the interplanetary medium, in particular, the Coronal Mass Ejection driving the particle acceleration, play a defining role and are simulated with the state-of-the-art MHD solver, Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme (BATS-R-US). The newly developed particle code, Multiple-Field-Line-Advection Model for Particle Acceleration (M-FLAMPA), simulates the actual transport and acceleration of SEPs and is coupled to the MHD code. The special property of SEPs, the tendency to follow magnetic lines of force, is fully taken advantage of in the computational model, which substitutes a complicated 3-D model with a multitude of 1-D models. This approach significantly simplifies computations and improves the time performance of the overall model. Also, it plays an important role of mapping the affected region by connecting it with the origin of

initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.

The Traumatic Brain Injury Endpoints Development (TED) Initiative is a 5-year, Department of Defense (DoD) funded project that is working toward the ultimate goal of developing better designed clinical trials, leading to more precise diagnosis, and effective treatments for traumatic brain injury (TBI). TED is comprised of leading academic clinician-scientists, along with innovative industry leaders in biotechnology and imaging technology, patient advocacy organizations, and philanthropists, working collaboratively with regulatory authorities, specifically the US Food and Drug Administration (FDA). The goals of the TED Initiative are to gain consensus and validation of TBI clinical outcome assessment measures and biomarkers for endorsement by global regulatory agencies for use in drug and device development processes. This manuscript summarizes the Initiative's Stage 1 progress over the first 18 months, including intensive engagement with a number of FDA divisions responsible for review and validation of biomarkers and clinical outcome assessments, progression into the prequalification phase of FDA's Medical Device Development Tool program for a candidate set of neuroimaging biomarkers, and receipt of FDA's Recognition of Research Importance Letter regarding TBI. Other signal achievements relate to the creation of the TED Metadataset, harmonizing study measures across eight major TBI studies, and the leadership role played by TED investigators in the conversion of the NINDS TBI Common Data Elements (CDEs) to Clinical Data Interchange Standards Consortium (CDISC) standards. This paper frames both the near-term expectations and the Initiative's long-term vision to accelerate approval of treatments for patients affected by TBI in urgent need of effective therapies.

The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

Subduction initiation and obduction are two poorly constrained geodynamic processes which are interrelated in a number of natural settings. Subduction initiation can be viewed as the result of a regional-scale change in plate convergence partitioning between the set of existing subduction (and collision or obduction) zones worldwide. Intraoceanic subduction initiation may also ultimately lead to obduction of dense oceanic "ophiolites" atop light continental plates. A classic example is the short-lived Peri-Arabic obduction, which took place along thousands of km almost synchronously (within 5-10 myr), from Turkey to Oman, while the subduction zone beneath Eurasia became temporarily jammed. We herein present analog models designed to study both processes and more specifically (1) subduction initiation through the partitioning of deformation between two convergent zones (a preexisting and a potential one) and, as a consequence, (2) the possible development of obduction, which has so far never been modeled. These models explore the mechanisms of subduction initiation and obduction and test various triggering hypotheses (i.e., plate acceleration, slab crossing the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises an upper mantle modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and high-viscosity silicone plates. Convergence is simulated by pushing on a piston at one end of the model with plate tectonics like velocities (1-10 cm/yr) onto (i) a continental margin, (ii) a weakness zone with variable resistance and dip (W), (iii) an oceanic plate - with or without a spreading ridge, (iv) a subduction zone (S) dipping away from the piston and (v) an upper active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as for the Oman case). Several configurations were tested over thirty-five parametric experiments. Special emphasis was




グループページ: Groups_SingleGroup
bottom of page